Copied to
clipboard

G = C42.6C22order 64 = 26

6th non-split extension by C42 of C22 acting faithfully

p-group, metabelian, nilpotent (class 2), monomial

Aliases: C42.6C22, C4:C8:12C2, C4:C4.5C4, C4.73(C2xD4), C4.12(C4:C4), (C2xC4).17Q8, C4.22(C2xQ8), C2.5(C8oD4), (C2xC4).127D4, C22:C4.2C4, (C22xC8).7C2, C22.8(C4:C4), (C2xC8).46C22, C23.17(C2xC4), (C2xC4).149C23, C42:C2.5C2, (C2xM4(2)).14C2, C22.44(C22xC4), (C22xC4).112C22, C2.10(C2xC4:C4), (C2xC4).25(C2xC4), SmallGroup(64,105)

Series: Derived Chief Lower central Upper central Jennings

C1C22 — C42.6C22
C1C2C4C2xC4C22xC4C42:C2 — C42.6C22
C1C22 — C42.6C22
C1C2xC4 — C42.6C22
C1C2C2C2xC4 — C42.6C22

Generators and relations for C42.6C22
 G = < a,b,c,d | a4=b4=1, c2=b, d2=a2b2, ab=ba, cac-1=a-1b2, dad-1=ab2, bc=cb, bd=db, dcd-1=a2b2c >

Subgroups: 73 in 57 conjugacy classes, 41 normal (13 characteristic)
C1, C2, C2, C2, C4, C4, C4, C22, C22, C22, C8, C2xC4, C2xC4, C23, C42, C22:C4, C4:C4, C2xC8, C2xC8, M4(2), C22xC4, C4:C8, C42:C2, C22xC8, C2xM4(2), C42.6C22
Quotients: C1, C2, C4, C22, C2xC4, D4, Q8, C23, C4:C4, C22xC4, C2xD4, C2xQ8, C2xC4:C4, C8oD4, C42.6C22

Character table of C42.6C22

 class 12A2B2C2D2E4A4B4C4D4E4F4G4H4I4J8A8B8C8D8E8F8G8H8I8J8K8L
 size 1111221111224444222222224444
ρ11111111111111111111111111111    trivial
ρ2111111111111-1-1-1-111111111-1-1-1-1    linear of order 2
ρ31111-1-11111-1-111-1-1-11-1-111-11-11-11    linear of order 2
ρ41111-1-11111-1-1-1-111-11-1-111-111-11-1    linear of order 2
ρ5111111111111-1-1-1-1-1-1-1-1-1-1-1-11111    linear of order 2
ρ61111111111111111-1-1-1-1-1-1-1-1-1-1-1-1    linear of order 2
ρ71111-1-11111-1-111-1-11-111-1-11-11-11-1    linear of order 2
ρ81111-1-11111-1-1-1-1111-111-1-11-1-11-11    linear of order 2
ρ9111111-1-1-1-1-1-1-11-11ii-i-i-i-iii-i-iii    linear of order 4
ρ10111111-1-1-1-1-1-1-11-11-i-iiiii-i-iii-i-i    linear of order 4
ρ11111111-1-1-1-1-1-11-11-1-i-iiiii-i-i-i-iii    linear of order 4
ρ12111111-1-1-1-1-1-11-11-1ii-i-i-i-iiiii-i-i    linear of order 4
ρ131111-1-1-1-1-1-1111-1-11i-i-i-iiii-ii-i-ii    linear of order 4
ρ141111-1-1-1-1-1-1111-1-11-iiii-i-i-ii-iii-i    linear of order 4
ρ151111-1-1-1-1-1-111-111-1-iiii-i-i-iii-i-ii    linear of order 4
ρ161111-1-1-1-1-1-111-111-1i-i-i-iiii-i-iii-i    linear of order 4
ρ172-2-22-22-22-22-220000000000000000    orthogonal lifted from D4
ρ182-2-222-2-22-222-20000000000000000    orthogonal lifted from D4
ρ192-2-22-222-22-22-20000000000000000    symplectic lifted from Q8, Schur index 2
ρ202-2-222-22-22-2-220000000000000000    symplectic lifted from Q8, Schur index 2
ρ2122-2-2002i-2i-2i2i000000850878300800000    complex lifted from C8oD4
ρ2222-2-2002i-2i-2i2i000000808387008500000    complex lifted from C8oD4
ρ232-22-200-2i-2i2i2i000000085008387080000    complex lifted from C8oD4
ρ2422-2-200-2i2i2i-2i000000830885008700000    complex lifted from C8oD4
ρ2522-2-200-2i2i2i-2i000000870858008300000    complex lifted from C8oD4
ρ262-22-200-2i-2i2i2i000000080087830850000    complex lifted from C8oD4
ρ272-22-2002i2i-2i-2i000000083008580870000    complex lifted from C8oD4
ρ282-22-2002i2i-2i-2i000000087008850830000    complex lifted from C8oD4

Smallest permutation representation of C42.6C22
On 32 points
Generators in S32
(1 23 27 16)(2 13 28 20)(3 17 29 10)(4 15 30 22)(5 19 31 12)(6 9 32 24)(7 21 25 14)(8 11 26 18)
(1 3 5 7)(2 4 6 8)(9 11 13 15)(10 12 14 16)(17 19 21 23)(18 20 22 24)(25 27 29 31)(26 28 30 32)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)
(1 19 31 16)(2 9 32 20)(3 21 25 10)(4 11 26 22)(5 23 27 12)(6 13 28 24)(7 17 29 14)(8 15 30 18)

G:=sub<Sym(32)| (1,23,27,16)(2,13,28,20)(3,17,29,10)(4,15,30,22)(5,19,31,12)(6,9,32,24)(7,21,25,14)(8,11,26,18), (1,3,5,7)(2,4,6,8)(9,11,13,15)(10,12,14,16)(17,19,21,23)(18,20,22,24)(25,27,29,31)(26,28,30,32), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,19,31,16)(2,9,32,20)(3,21,25,10)(4,11,26,22)(5,23,27,12)(6,13,28,24)(7,17,29,14)(8,15,30,18)>;

G:=Group( (1,23,27,16)(2,13,28,20)(3,17,29,10)(4,15,30,22)(5,19,31,12)(6,9,32,24)(7,21,25,14)(8,11,26,18), (1,3,5,7)(2,4,6,8)(9,11,13,15)(10,12,14,16)(17,19,21,23)(18,20,22,24)(25,27,29,31)(26,28,30,32), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,19,31,16)(2,9,32,20)(3,21,25,10)(4,11,26,22)(5,23,27,12)(6,13,28,24)(7,17,29,14)(8,15,30,18) );

G=PermutationGroup([[(1,23,27,16),(2,13,28,20),(3,17,29,10),(4,15,30,22),(5,19,31,12),(6,9,32,24),(7,21,25,14),(8,11,26,18)], [(1,3,5,7),(2,4,6,8),(9,11,13,15),(10,12,14,16),(17,19,21,23),(18,20,22,24),(25,27,29,31),(26,28,30,32)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32)], [(1,19,31,16),(2,9,32,20),(3,21,25,10),(4,11,26,22),(5,23,27,12),(6,13,28,24),(7,17,29,14),(8,15,30,18)]])

C42.6C22 is a maximal subgroup of
C23.7M4(2)  C22:C4.C8  M4(2).42D4  (C2xD4).Q8  M4(2).3Q8  C4:C4.96D4  C4:C4.97D4  C4:C4.98D4  C22:C4.7D4  M4(2).12D4  M4(2).13D4  M4(2).Q8  M4(2).2Q8  C22:C4.Q8  C42.257C23  C42.674C23  C42.260C23  C42.261C23  C42.262C23  C42.264C23  C42.265C23  M4(2):22D4  C42.286C23  C42.287C23  M4(2):9Q8  C42.307C23  C42.308C23  C42.309C23  C42.310C23  C42.14C23  C42.15C23  C42.16C23  C42.17C23  C42.18C23  C42.19C23  C42.20C23  C42.21C23  C42.22C23  C42.23C23  C4.2- 1+4  C42.25C23  C42.26C23  C42.27C23  C42.28C23  C42.29C23  C42.30C23  C20:C8:C2
 C42.D2p: C42.428D4  C42.107D4  C42.9D4  C42.10D4  C42.30D6  C42.43D6  C42.30D10  C42.43D10 ...
 C4p.(C4:C4): C42.62Q8  C42.28Q8  Dic3:C8:C2  C12.88(C2xQ8)  C20.65(C4:C4)  C20.51(C4:C4)  C4:C4.9F5  Dic7:C8:C2 ...
C42.6C22 is a maximal quotient of
C23.29C42  C20:C8:C2  C4:C4.9F5
 C42.D2p: C42.90D4  C42.91D4  C42.Q8  C42.92D4  C42.21Q8  C42.45Q8  C42.95D4  C42.23Q8 ...
 (C2xC8).D2p: C23.21M4(2)  (C2xC8).195D4  Dic3:C8:C2  C12.88(C2xQ8)  C20.65(C4:C4)  C20.51(C4:C4)  Dic7:C8:C2  C28.439(C2xD4) ...

Matrix representation of C42.6C22 in GL4(F17) generated by

0100
16000
0001
0010
,
4000
0400
0040
0004
,
2000
0200
00150
0002
,
0100
1000
0001
00160
G:=sub<GL(4,GF(17))| [0,16,0,0,1,0,0,0,0,0,0,1,0,0,1,0],[4,0,0,0,0,4,0,0,0,0,4,0,0,0,0,4],[2,0,0,0,0,2,0,0,0,0,15,0,0,0,0,2],[0,1,0,0,1,0,0,0,0,0,0,16,0,0,1,0] >;

C42.6C22 in GAP, Magma, Sage, TeX

C_4^2._6C_2^2
% in TeX

G:=Group("C4^2.6C2^2");
// GroupNames label

G:=SmallGroup(64,105);
// by ID

G=gap.SmallGroup(64,105);
# by ID

G:=PCGroup([6,-2,2,2,-2,2,-2,96,121,55,332,88]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=1,c^2=b,d^2=a^2*b^2,a*b=b*a,c*a*c^-1=a^-1*b^2,d*a*d^-1=a*b^2,b*c=c*b,b*d=d*b,d*c*d^-1=a^2*b^2*c>;
// generators/relations

Export

Character table of C42.6C22 in TeX

׿
x
:
Z
F
o
wr
Q
<